Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313388, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350631

RESUMO

Organic electrode materials (OEMs) have gathered extensive attention for aqueous zinc-ion batteries (AZIBs) due to their structural diversity and molecular designability. However, the reported research mainly focuses on the design of the planar configuration of OEMs and does not take into account the important influence of the spatial structure on the electrochemical properties, which seriously hamper the further performance liberation of OEMs. Herein, this work has designed a series of thioether-linked naphthoquinone-derived isomers with tunable spatial structures and applied them as the cathodes in AZIBs. The incomplete conjugated structure of the elaborately engineered isomers can guarantee the independence of the redox reaction of active groups, which contributes to the full utilization of active sites and high redox reversibility. In addition, the position isomerization of naphthoquinones on the benzene rings changes the zincophilic activity and redox kinetics of the isomers, signifying the importance of spatial structure on the electrochemical performance. As a result, the 2,2'-(1,4-phenylenedithio) bis(1,4-naphthoquinone) (p-PNQ) with the smallest steric hindrance and the most independent redox of active sites exhibits a high specific capacity (279 mAh g-1 ), an outstanding rate capability (167 mAh g-1 at 100 A g-1 ), and a long-term cycling lifetime (over 2800 h at 0.05 A g-1 ).

2.
Angew Chem Int Ed Engl ; 62(35): e202307365, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37423888

RESUMO

The slow reaction kinetics and structural instability of organic electrode materials limit the further performance improvement of aqueous zinc-organic batteries. Herein, we have synthesized a Z-folded hydroxyl polymer polytetrafluorohydroquinone (PTFHQ) with inert hydroxyl groups that could be partially oxidized to the active carbonyl groups through the in situ activation process and then undertake the storage/release of Zn2+ . In the activated PTFHQ, the hydroxyl groups and S atoms enlarge the electronegativity region near the electrochemically active carbonyl groups, enhancing their electrochemical activity. Simultaneously, the residual hydroxyl groups could act as hydrophilic groups to enhance the electrolyte wettability while ensuring the stability of the polymer chain in the electrolyte. Also, the Z-folded structure of PTFHQ plays an important role in reversible binding with Zn2+ and fast ion diffusion. All these benefits make the activated PTFHQ exhibit a high specific capacity of 215 mAh g-1 at 0.1 A g-1 , over 3400 stable cycles with a capacity retention of 92 %, and an outstanding rate capability of 196 mAh g-1 at 20 A g-1 .

3.
Chem Commun (Camb) ; 59(17): 2437-2440, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723296

RESUMO

Aqueous Zn-based batteries deliver thousands of cycles at high rates but poor recyclability at low rates. Herein, we reveal that this illogical phenomenon is attributed to the reconstructed electrode/electrolyte interface at high rates, wherein the condensed electrical double layer (EDL) and the tightly absorbed Zn2+ ions on the Zn electrode surface afford compact and corrosion-resistant Zn deposits.

4.
ACS Nano ; 16(12): 20730-20738, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36507930

RESUMO

Alkaline Zn-MnO2 batteries feature high security, low cost, and environmental friendliness while suffering from severe electrochemical irreversibility for both the Zn anode and MnO2 cathode. Although neutral electrolytes are supposed to improve the reversibility of the Zn anode, the MnO2 cathode indeed experiences a capacity degradation caused by the Jahn-Teller effect of the Mn3+ ion, thus shortening the lifespan of the neutral Zn-MnO2 batteries. Theoretically, the MnO2 cathode undergoes a highly reversible two-electron redox reaction of the MnO2/Mn2+ couple in strongly acidic electrolytes. However, acidic electrolytes would inevitably accelerate the corrosion of the Zn anode, making long-lived acidic Zn-MnO2 batteries impossible. Herein, to overcome the challenges faced by Zn-MnO2 batteries, we propose a hybrid Zn-MnO2 battery (HZMB) by coupling the neutral Zn anode with the acidic MnO2 cathode, wherein the neutral anode and acidic cathode are separated by a proton-shuttle-shielding and hydrophobic-ion-conducting membrane. Benefiting from the optimized reaction conditions for both the MnO2 cathode and Zn anode as well as the well-designed membrane, the HZMB exhibits a high working voltage of 2.05 V and a long lifespan of 2275 h (2000 cycles), breaking through the limitations of Zn-MnO2 batteries in terms of voltage and cycle life.

5.
Nat Rev Chem ; 6(7): 505-517, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37117314

RESUMO

Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...